RENEWABLE DIESEL 2030: Low Carbon Fuels for Air, Land and Sea
Renewable Diesel Production for Road Transport, Sustainable Aviation & Marine Biofuels
INTRODUCTION

FAST GROWTH IN LOW CARBON FUELS DEMAND

Renewable Diesel 2030, a new study from Emerging Markets Online, projects global renewable diesel production to increase at a combined annual growth rate (CAGR) of 24% from a current capacity of 4.8 million tons (1.4 billion gallons) per year in 2019 to 19.7 million tons (5.8 billion gallons) by 2025. This rapid expansion of renewable diesel production is being driven by low carbon fuels from the Pacific coast of the U.S., and an enormous pent-up demand for sustainable aviation fuels in US, EU and Canada.

The Renewable Diesel 2030 study notes the average size of a current renewable diesel biorefinery is currently 116 million gallons/year. New plants are being built at more than twice the current size, at 263 million gallons/year on average, per plant.

LOW CARBON FUEL STANDARDS IN US, EU, CANADA

Most of these plants are being constructed to serve the states in the U.S. Pacific Northwest and Canada and their new LCFS (Low Carbon Fuel Standard) plans. California alone represents 4 billion gallons of renewable diesel demand by 2030. The market-pull from these west coast states is spawning the construction of new biojet and renewable diesel biorefineries in Canada, France, Italy, Sweden, Norway and Paraguay.

The Renewable Diesel 2030 study notes the average size of a current renewable diesel biorefinery is currently 116 million gallons/year. New plants are being built at more than twice the current size, at 263 million gallons/year on average, per plant.

SUSTAINABLE AVIATION FUEL DEMAND RISES

Aviation fuels demand is prompting veteran renewable diesel producers Neste in Singapore and Diamond Green Diesel each to re-invest approximately $1 billion to double their capacities and serve these emerging markets for renewable diesel and sustainable jet fuels.

The Renewable Diesel 2030 study also notes the U.N.’s CORSIA agreement presents very large demands for BioJet compliance starting in 2024, when fuel purchases begin, and in 2027 when the mandatory period for CORSIA’s sustainable aviation fuel members begins.

IMO 2020 DEMAND FOR MARITIME FUELS

In addition, the Renewable Diesel 2030 study covers key shipping opportunities and challenges coming from IMO 2020 maritime emissions regulations.
1. GLOBAL DEMAND DRIVERS FOR RENEWABLE DIESEL PRODUCTION

1.1 New GHG and Low-Carbon Fuels Regulations Bring New Opportunities

1.1.1. Clean Cities Transport Initiative Opportunities in U.S., Europe, Americas, Asia
1.1.2. Sustainable Aviation Initiatives for COP21 Corsia (U.N.) Program Begins 2020
1.1.3. Sustainable Shipping Initiatives for IMO (U.N.) 2020 Regulations Begin in 2020
1.1.4. Feedstock Opportunities to Produce Low-Carbon Fuels for Emerging Markets like California

1.2 Low Carbon Fuel Regulations Bring Disruptive Challenges, Opportunities to Producers

1.2.1 Change and Transition from 2020 Targets to 2030 COP21 GHG Targets
1.2.2 New GHG Targets Bring Opportunities for Bio/Renewable Diesel (California, EU Canada)
1.2.3 New GHG Targets Bring Challenges to 1st Generation Biodiesel Producers (Soy, Palm)
1.2.4 New GHG Regulations Bring Opportunities to Refiners, Blenders, Obligated Parties

2. SUMMARY OF GLOBAL RENEWABLE DIESEL PRODUCTION

2.1 Review of Renewable Diesel and Biojet Demand Projections
2.2 Analysis of Global Renewable Diesel Production by Region, Location and Capacity
2.3 Top 10 Global Renewable Diesel Producers - Comparative Analysis by Production Volumes
2.4 Current Global Renewable Diesel Producers by Capacity, MT, Gallons, and Location, 2019
2.5 Planned Global Renewable Diesel Expansions by Capacity, MT, Gallons, and Location, 2019
2.6 New Renewable Diesel Plants Under Construction by Capacity, MT, Gallons, Location, 2019

3. EUROPE – DEMAND DRIVERS

3.1 Renewable Energy (RED2) Directives and Targets 2020 to 2030, by Country
3.2 Current EU Renewable Diesel Production Based on COP21 Targets for GHG to 2030
3.3 Market Size and Share of European Renewable Diesel Production by Project
3.4 Rapid Expansion of Europe Renewable Diesel (HVO) Production 2011-2018

4. EUROPE - CASE STUDIES OF RENEWABLE DIESEL PRODUCERS, AND REFINERIES, BY COUNTRY

Each producer site case study includes: Start Up Date, Location, Status, Production Capacity, Feedstocks, Technology Partners for FCC, Hydrogen Production, HydroTreating, Distillation, Offtake Partners, Co Products, Expansion Plans

4.1 DENMARK
Neste (Rotterdam)

4.2 FINLAND
Neste (Finland Site 1)
Neste (Finland Site 2)
UPM (Lappeenranta)
UPM (Kotka)

4.3 ITALY
ENI (Venice)
ENI (Sicily Gela Plant Expansion)

4.4 FRANCE
Total (La Mede)

4.5 SWEDEN - Preem (Gothenburg)
5. US DEMAND DRIVERS, LOW CARBON FUEL STANDARDS & PROGRAMS

5.2 California Low Carbon Fuel Standard 2012-2030
5.3. Oregon Low Carbon Fuel Standard
5.4 Washington Low Carbon Fuel Standard
5.5 Minnesota and other states with Volumetric Targets

6. USA CASE STUDIES OF RENEWABLE DIESEL PRODUCERS

Each producer case study includes: Start Up Date, Location, Status, Production Capacity, Feedstocks, Technology Partners for FCC, Hydrogen Production, HydroTreating, Distillation, Offtake Partners, Co Products, Expansion Plans

6.1 Diamond Green Diesel (Louisiana, US)
6.2 REG (Geismar, Louisiana, US)
6.3 World Energy (Los Angeles, US)
6.4 Emerald Biofuels (US planned)
6.5 Kern Oil (California, USA)
6.6 REG / Phillips 66 (Ferndale, Washington State)
6.7 Phillips 66 / Ryze Renewables (Reno and Las Vegas, Nevada)
6.8 NEXT Renewable Fuels (Port of Columbia, Oregon)
6.9 Andeavor (Dickinson, North Dakota)

7. CASE STUDIES OF RENEWABLE DIESEL PRODUCERS AROUND THE WORLD

7.1 SPAIN: Repsa, Cepsol
7.2 PORTUGAL: Galp
7.3 SWEDEN: Preem, Sunpine
7.4 CANADA: Cielo, SB1
7.5 SINGAPORE: Neste
7.6 PARAGUAY/BRAZIL: BS Bios Paraguay
7.7 CHINA: Sinopec

8. CO-PROCESSING NEXT GENERATION FEEDSTOCKS, BIO-OILS INTO RENEWABLE DIESEL

8.1 Case Studies of Renewable Diesel Co-Processing in FCC and Hydro-Crackers at Petrol Refineries
8.2 Up-Grading Next Gen Feedstocks (Wood, Ag Residues, Waste) to Bio-Crude for Co Processing
 8.2.1 Fischer-Tropsch Commercial Level Producers of Bio-Crude/Syncrude Intermediates for Processing
 8.2.2 Pyrolysis Commercial Level Producers of Bio-Crude/Syncrude Intermediates for Processing
 8.2.3 Hydro-Thermal Liquefaction Demonstration Level Producers
8.3 Next-Generation Technologies and Feedstocks
9. BIOJET AND SUSTAINABLE AVIATION – COMMERCIAL MARKETS

9.1 Global Policies and Targets - U.N. and C.O.R.S.I.A
9.2 Regional Aviation Policies and Targets - EU RED2
9.3 National Aviation Policies and Targets - US RFS, Canada CFS, C.O.R.S.I.A’s member countries & targets
9.4 Key Organizations in Sustainable Aviation

9.5 Sustainable Aviation Producers, Technologies, Partnerships, and Agreements:

9.5.1 World Energy - with United Airlines, World Fuel Services, Gulfstream, SkyNRG, KLM, AirBP, Oslo, SAS
9.5.2 Red Rock Biofuels - Southwest Airlines, Federal Express
9.5.3 Total & Amyris - Cathay Pacific
9.5.4 SG Preston - JetBlue, Quantas
9.5.5 DG Energy - GE Aviation
9.5.6 Gevo - Lufthansa, Virgin Australia
9.5.7 Velocys - British Airways
9.5.8 United Airlines, World Energy, Agrisoma Biosciences
9.5.9 AirFrance, Amyris, Total
9.5.10 Amyris, Airbus, Cathay Pacific
9.5.11 KLM, Boeing, SkyNRG
9.5.12 Singapore Airlines, SkyNRG, China Aviation Oil
9.5.13 Alaska Airlines, Gevo, NARA, WSU
9.5.14 Masdar Institute, Etihad Airways
9.5.15 Statoil, SkyNRG, BMI Regional, Nextjet
9.5.16 ReadiFuels – ARA Chevron Lummus Global

9.6 Sustainable Aviation Outlook and Forecasts

9.6.1 Sustainable Aviation Goals and Targets by Country, Organization, Timeline
9.6.2 Sustainable Aviation Fuel Demand Forecast From 2015 to 2055 based on IEA, ICAO
9.6.3 Estimated EU Bio-Based Aviation Fuel Production 2017-2025 at 15% Blend Rates
9.6.4 Investment Risk Outlook & Volume of Sustainable Aviation Fuels 2015 to 2030 to 2050
9.6.5 De-Risking Start Up CAPEX & OPEX Costs With Low Cost Feedstocks & Long-Term Partnerships

10. Technology Providers and Producers of Intermediates (Biocrude, ATJ) for Up-Grading into Renewable Diesel & Jet Fuel via Fischer-Tropsch, Pyrolysis, ATJ, and other TRL Level 5+ Players

10.1 Producers of Biocrude & Syncrude Intermediates for Up-Grading to Renewable Diesel and Jet Fuels
 10.1.1 Velocys (FT)
 10.1.2 Fulcrum (FT)
 10.1.3 RedRock (FT)
 10.1.4 ReadiFuels/ARA (HTL)
 10.1.5 SBI (CGC PICFTR)

10.2 ATJ Alcohol To Jet Producers via Dehydration, Isomerization, Up-Grading to Drop-In Fuels
 10.2.1 Lanzatech
 10.2.2 Gevo
 10.2.3 Byogy
 10.2.4 Vertimass
11. MARITIME IMO 2020 SHIPPING TRENDS, OPPORTUNITIES AND OUTLOOK

11.1 IMO 2020 Mandate and Specifications
11.2 Markets - Size, Share, Competition, Biofuels Players in Marine Markets (i.e. GoodFuels, Neste)
11.3 Outlook for Bio-Based Diesel, Renewable Diesel and Biofuels for IMO 2020 Deployment

12. OUTLOOK AND FORECASTS TO 2030

12.1 Short Term Forecasts to 2020, Reviews and Outlook
12.2 Medium Term Forecasts to 2025, Reviews and Outlook
12.3 Long term Forecasts to 2030, Reviews and Outlook

APPENDIX OF FEEDSTOCKS CITED IN THE REPORT IN COMMERCIAL AND DEMONSTRATION PROJECTS

i. Waste-Based F.O.G.s, Fats, Oils and Greases
 i.i Used Cooking Oil / Yellow Grease
 i.ii Poultry Fat
 i.iii Tallow
 i.iv White Grease
 i.v Brown Grease
 i.vi Trap Grease

ii. Energy Crops From Non-Food Vegetable Oils, Aquatic Species, and Grasses
 ii.i DCO - Distiller’s Corn Oil
 ii.ii Rotational Crops: Carinata, Camelina, Pennycress
 ii.iii Tall Oils from Forestry
 ii.iv Pongamia
 ii.v Castor
 ii.vi Tobacco Oils
 ii.vii Hemp
 ii.viii Winter Oilseeds
 ii.ix Jatropha
 ii.x Aquatic Oils - Algae, Seaweed, Halophytes, Salicornia
 ii.xi Grasses: Miscanthus, Switchgrass, Elephant Grass

iii. Waste Based Agricultural and Forestry Residues
 iii.i Wood and Forestry Residues
 iii.ii Sawmill Residues and Sawdust
 iii.iii Municipal Solid Waste
 iii.iv Bagasse
 iii.v Corn Stover
 iii.vi Rice Husks
 iii.vii Almond and Nut Shells
CHAPTER 1 GLOBAL MARKET DEMAND AND PRODUCTION OF RENEWABLE DIESEL

Roadmap: Renewable Diesel and Biojet Demand Projections 2015-2055 in MT (IEA Tech Roadmap)

Map of Global Renewable Diesel Production By Producer, Region, Location and Capacity 2019

Chart: Global Renewable Diesel Producer Comparison by Production Volumes Top 10 Producers 2019

Table: Current Global Renewable Diesel Producer by Capacity, MT, Gallons, and Location, 2019

Table: Planned Global Renewable Diesel Expansion by Capacity, MT, Gallons, and Location, 2019

Table: New Renewable Diesel Plants Under Construction by Capacity, MT, Gallons, Location, 2019

EUROPE

EU Renewable Energy (RED2) Directives and Targets 2020 to 2030, by Country

EU Renewable Diesel Production Volumes Based on COP21 Targets for GHG Emission Savings to 2030

Pie Chart: Europe Renewable Diesel Production by Project, Million Liters Per Year Capacity

Time Series Chart: Europe Renewable Diesel (HVO) Production and Production Capacity 2011-2018

Chart: Europe Renewable Diesel Production By Country 2009-2018, Netherlands, Finland, Italy, France

Producer Case Study: Neste, Finland, Renewable Diesel Plant in Porvoo, Feedstocks, Technology, Capacity, Co Products, Startup, Expansion

Producer Case Study: Neste, Porvoo Refinery Technology Overview of Hydrogen Production Plant and Hydrocracker Units at Porvoo, Including Technology Types, Suppliers, Partners, CAPEX and Capacity

Producer Case Study: UPM, Finland, Lappeenranta Refinery, Feedstocks from Tall Oil and Wood Residues, Hydrotreating and Distillation Technology for Tall Oil, Capacity, Start Up Date, Offtake

Producer Case Study: ENi, Italy, Renewable Diesel Plant in Venice, Feedstock Use in MT, UOP/ENI Technology, Capacity, Co Products (Green Diesel, Naptha, LPT, Jet Fuel), Startup, Expansion Plans

Producer Case Study: ENi, Italy, Renewable Diesel Plant in Gela, Feedstock Use in MT, UOP/Eni Technology, Capacity, Co Products (Green Diesel, Naptha, LPT, Jet Fuel), Startup, Expansion Plans

Producer Case Study: Total, France, Renewable Diesel Plant in La Mede, Feedstock Use by Type in MT, Technology Partners, Capacity and Expansion, Co Products, Startup Date, Expansion Plans

Table: EU RED2 & CORSIA Analysis of Renewable Diesel Technologies by Type, Feedstocks Used, GHG Emissions Score/Rating % for Each Technology and Feedstock (FT, HVO, HEFA, SIP, ATJ)

EU Forecast 2021-2030: RED2 Targets for Renewable Diesel & Aviation Fuel Production in MT by Maximum Shares from 1st Gen, 2nd Gen, and Advanced Fuels/Feedstocks (Annexes IX Part A & B)
CHAPTER 1 GLOBAL MARKETS FOR RENEWABLE DIESEL FUELS PRODUCTION & CO-PROCESSING

USA

USA Biomass-Based Biodiesel Targets, EPA Final Renewable Fuel Volume Requirements for 2018-2020 in Billion Gallons, by Year, for Biomass Based Diesel, Advanced Biofuels, and Renewable Fuel

Table: USA 2015-2018 Biomass Based Diesel Growth Over Time, Million Gallons/Yr, Final Volume Standards

Chart: US Renewable Diesel Production Volumes in Million Gallons Per Year 2010-2018

Table: Current U.S. Renewable Diesel Producers by Capacity, MT, Gallons, and Location, 2019

Producer Case Study: Diamond Green Diesel, Renewable Diesel Plant in Louisiana, Feedstocks, Technology, Capacity, Co Products, Startup, Expansion Plans, Offtake Partners

Producer Case Study: REG, Renewable Diesel Plant in Louisiana, Feedstocks, Technology, Capacity, Co Products, Startup, Expansion Plans, Offtake Partners

Producer Case Study: World Energy (AltAir), Biojet & Renewable Diesel Plant in California, Feedstocks, Technology Partners, Production Capacity, Co Products, Startup, Expansion Plans, Offtake Partners

CALIFORNIA

Chart: California LCFS Renewable Diesel Growth Acceleration from 2012-2018, in Million Gallons

Chart: California LCFS Renewable Diesel Supply from 2012-2018, in Million Gallons

Chart: California LCFS Renewable Diesel & Biodiesel Production Volumes 2011-2017, Million Gallons

Chart: California LCFS Renewable Diesel and Biodiesel Production 2011-2017 by Crops and Residues Used w Credits (in Million MT) for Soy, Canola, Fish Oil, Distillers Corn Oil, Tallow, Used Cooking Oil

Chart: California Annual Diesel Demand Forecast: 2018-2030 by Biodiesel, Renewable Diesel, Petroleum Diesel, in Millions of Gallons, Based on Governor Newsom’s New 2019 Targets

CANADA

Canada’s Renewable Diesel Mandates by Target Volumes and GHG Reduction in Carbon Intensity

Canada’s Renewable Diesel Mandates, By Province, British Colombia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec, and Atlantic Canada, by Target Volumes and GHG Reduction in Carbon Intensity

Canada’s Clean Fuel Standard, Current Timeline of Regulatory Plans from 2018-2023 by Liquid Fuel Stream, Solid and Gaseous Fuel Stream Requirements, LCA Model, and Carbon Intensity Values

Chart: Canada’s Renewable Diesel & Biodiesel Consumption 2011-2016, in Million Metric Tons Year

Chart: Consumption of Renewable Diesel and Biodiesel in Canada By Feedstock, 2010-2016, in Million Liters and GHG % Avoided in Mt CO2ee by: Canola, Soy, Tallow, Yellow Grease, Palm, Rapeseed
NEXT GENERATION FEEDSTOCKS AND TECHNOLOGIES FOR CO-PROCESSING

Table: What’s Next in Renewable Diesel and Jet Fuel Blending? HEFA & FT Process Technologies For Sustainable Feedstocks by Pathway, Process, Producers, Date of Approval by Tech, and Blending Limit

Graph: Global Feedstocks for Renewable Diesel and Sustainable Jet Fuel Co-Processing, including Residues, Waste, Energy Crops, MSW, Forest Residues, Agricultural Residues, Organic Waste Streams

Table: Examples of Co Processing of Syncrude/Green Crude by Company, Location, Feedstock, Conversion Pathway by HEFA & Fischer Tropsch and Annual Capacity by Producer in Million Gal/Yr

Graph: Example of Refinery Co-Processing Crude Oil and Renewable Green Crude Oil into Renewable Diesel and Gasoline, Leveraging Existing Refinery Infrastructure for CAPEX, OPEX Advantages

Graph: Example of Production of Green/Syncrude for Co-Processing, by Feedstock Pre-Treatment, Fischer-Tropch Gasification of Sustainable Feedstocks to Syncrude, and Co-Processing Syncrude via Hydtrotreating and Hydro-Cracking into Renewable Diesel, sustainable Aviation Fuel, and Co-products

Graphs: Examples of Co-Processing Green/Syncrude by Velosys, Ensyn, ARA Chevron Lummus Global

SUSTAINABLE AVIATION FUELS

Chart: Commercial Flights Operated on Sustainable Aviation Fuel 2008-2018, in Hundred Thousands

Map: Regular Commercial Sustainable Aviation Fuel Flights Taking Off From 5 Airports in 2019

Table: Sustainable Aviation Fuel Offtake Agreements by Producer, Partner, Airline, Agreement, Volumes

Table: Sustainable Aviation Fuel Agreements by Producer, Purchaser, Offtake Production per Year, Date

Graph: Early Stage Biojet Partnership Initiatives by Stakeholder Group, Projects Producers, Airlines

Biojet Case Study: World Energy/Alt-Air and United Airlines Commercial Partnership by Date, Million Gallons, Blend Ratio, CO2 Reduction, Thousands of Flights, Job Creation

Biojet Case Study: Neste-Lufthansa Commercial Partnership by Date, Million Gallons, Blend Ratio, CO2 Reduction, Thousands of Flights

Biojet Case Study: Neste Air Cooperation With Leading Aviation Brands 2011-2018, including Lufthansa, Boeing, KLM, SAS, American Airlines, Alaska Airlines, UPS, DFW & SFO Airports, Air BP

Biojet Case Study: Gevo Commercial Partnerships by Date, Million Gallons, Production Facilities for IsoButanol and ATJ, and Jet Fuel Production Partnerships for Alaska Airlines and Lufthansa Airlines

Biojet Case Study: Fulcrum Commercial Partnerships With United Airlines and BP Air by Date, Feedstock Supply Chain, Biocrude Production, Co-Processing, and Offtake Agreement with BP Air

Biojet Case Study: Red Rock Biofuels Supply Chain Partnerships With TSS, Flour, PPE, Wood Group, Velocys, Haldor Topsoe, TCG, and Ten Year Offtake Agreements with Southwest Airways and FedEx

Biojet Case Study: Licella Biojet Production Partnerships and Offtake for Quantas and Virgin Australia
SUSTAINABLE AVIATION FUELS (continued)

Table: Sustainable Aviation Goals and Targets by Country, Organization, Target (Percentage), Timeline
Table: Biojet Process Technologies & Pathways, Feedstocks, Producers, Approval Date, Blend Limit
Table: Technology and Fuel Readiness Levels for Six Production Pathways from 1-9 by TRL and FRL for HEFA, Co-Processing, FT-SPK, FT-SPK/A, ATJ-SPK, HFS-SIP

Alcohol to Jet (ATJ) Fuel Technology - Process and Refining Diagram by Dehydration, Oligomerization, Distillation, Catalytic Reforming, Hydrogenation, and Production of Biojet Kerosene, Renewable Diesel

Graph: Alcohol-To-Jet (ATJ) Players, Projects, Technologies Overview

ATJ Biojet Case Study: Byogy's Four Step Process, Ethanol Dehydration, Oligomerization, Distillation, Hydrogenation and Production of Biojet Fuel, Renewable Diesel and Gasoline

ATJ Biojet Case Study: Vertimass’ Process, Ethanol processing via Heat Exchanger, Catalyst, Distillation and Fractionation into Biojet Fuel, JP-8, Renewable Diesel and Gasoline, Renewable Chemicals (BTEX)

ATJ Biojet Case Study: LanzaTech’s Gasification of Industrial Waste Gases and Biomass via Gas Fermentation into Alcohols and Process via Dehydration, Chemical Synthesis, Hydrogenation into Biojet

ATJ Biojet Case Study: LanzaTech’s Commercial Scale Facilities Planned in China, Belgium, South Africa, India, California

Chart: Projected Global Production Capacity Build Out to 2030 by Technology Type, including FT-GTL, Fast Pyrolysis Upgrading, Hydrothermal Liquefaction Upgrading, Catalytic Conversion of 2G Alcohols

Table: Estimated EU Bio-Based Aviation Fuel Production Capacity in Million Tons/Yr from 2017-2025 in Two Scenarios: Max Scenario Based on HVO Plants, Moderate Scenario Based on 15% Blend Rates

Chart: Illustrated Investment Risk Outlook & Volume of Sustainable Aviation Fuels 2015 to 2030 to 2050

Chart: Sustainable Aviation Fuel Demand Forecast From 2015 to 2055 based on IEA, ICAO Calculations

Chart: Creative Pricing and Value Structures for Sustainable Aviation Fuels by De-Risking Start Up CAPEX Costs and De-Risking OPEX Costs With Low Cost Feedstocks and Long-Term Partnerships

SHIPPING & CARGO – IMO 2020 OPPORTUNITIES FOR RENEWABLE DIESEL

Table: Marine Biofuel Market Drivers: Emission Regulations (Sox, Nox, CO2), Local Incentives (Ports, Governments), Market Incentives (Public Tenders, Global Brands, Cargo Owners)

Table: Comparison of Fuel Consumption Volumes in The Maritime and Aviation Sectors With Current and Potential Biofuel Production Volumes Based on Feedstocks and Crops from Agriculture and Forestry

Chart: IMO Agreement to Reduce Atmospheric Pollution From Ships Based on Sulphur Content of Fuel Permitted Inside and Outside of Emission Control Areas 2005-2025, by Sulfur Percentage and Content

Table: IMO Analysis of Renewable Diesel vs Petroleum Diesel for Sulphur Content in mg/kg
Table of Figures, continued (pg 5)

SHIPPING & CARGO – IMO 2020 OPPORTUNITIES FOR RENEWABLE DIESEL
(continued)

Chart: IMO Analysis of Nitrogen (Nox) Emission Limits in NoX Emission Control Areas, Tiers 1-III

Chart: IMO Targets Requiring Shipping to Cut GHG CO2 Emissions 50% by 2050 in Tons, 2008 & 2050

Chart: IMO Fuels Measured by Type of Fuel (Diesel, Gas Oil, Light Fuel Oil, Heavy Fuel Oil, Liquefied Petroleum Gas, Liquefied Natural Gas, Methanol and Ethanol), and Carbon Content (t-Co2/t-Fuel)

Table: Benefits of Drop In Renewable Diesel Fuels Supplies vs LNG Supplies and Scrubbers to Meet IMO Shipping Regulations for Sox, Nox, and CO2 Greenhouse Gas Emissions

Chart: Market Projections for Marine Fuels Volumes Comparing Biofuels to LNG by MT/yr, 2020-2030

ECONOMICS (CAPEX & OPEX ESTIMATES) OF RENEWABLE DIESEL AND BIOJET TECHNOLOGIES

Table: OPEX / Production Costs of Biojet Fuels by Technology (HEFA, FT, ATJ) and Feedstock (Used Cooking Oil, Yellow Grease, Tallow, Soy Oil, Palm Oil, Camelina Oil, Corn Stover, Switch Grass, Wood, Sugarcane, Lignocellulose) Cost of Production in $ per Liter – Minimum Selling Price

Table: OPEX Production Costs of Sustainable Aviation Fuels from Various Pathways, including ATJ (Ethanol, n-Butanol, Iso-Butanol, Methanol), OTJ (Pyrolysis, CH, HRJ of Bio-Crude Oils), GTJ (FT, CTL, CBTL, Gas Fermentation) of Syngas to Hydrocarbons and Ethanol, STJ (Catalytic Conversion of Sugars via ARP and HMF Pathways) of Syngas to Ethanol, DMF and HMF, Fatty Acids and Farnesene – Intermediate Costs in $/Gallon and Final Jet Fuel Costs/OPEX in $/Gallon

Table: OPEX Cost of Biojet by Technology Pathways – HDO of Camelina, Gasification-FT (Corn Stover, Switch Grass, Algae), HDO and Advanced Fermentation (Pongamia, Sugarcane Molasses, Alga, Corn Grain, Switchgrass) and HDO (Wasted Oil, Tallow, Soybean Oil) - Prices in US $/Liter

FEEDSTOCK COSTS AND FORECASTS

Short Term Outlook – Where Will We Get the Feedstocks and The Fuels? Illustration of Harvest of Oilseeds by Continent, Estimated, in Million Tons – North America, S. America, Europe, Africa, Asia

Short Term Outlook: Current Production of Oilseed Crops, Total and Worldwide, 2018/19, Estimated in Million Tons, 2003-2019 by Feedstock Type (Palm, Sunflower, Rapeseed, Soybeans) for Total Global Oilseed Production

Mid Term Outlook – Food Production Increases With World Population, Supply of Grain and Vegetable Oils in 2018-19, Estimated by Continent in KG Per Capita, North America, S. America, Europe, Africa, Asia, Oceania

Mid Term Outlook: Oilseed Harvests Growing Steadily, Harvests of Oilseeds by Continent, 2018-19, Estimated in Million Tons for North America, South America, Europe, Africa, Asia and Oceana

REVIEW OF FORECASTS – SHORT TERM, MID TERM, AND LONG-TERM OUTLOOKS

Short Term Outlook: Supply and Demand Imbalances Between Advanced Biodiesel and Renewable Diesel Mandates for Low Carbon Markets in U.S. & E.U., Canada and Low Cost Suppliers / Exporters in Emerging Markets

Medium Term Outlook: Transition from 2020 Volumetric Targets to 2030 LCFS and COP21 GHG Targets Increases Market Demand for Several Lower-Carbon Fuels, Feedstocks, Process Technologies

Long Term Outlook: Commercialization of (1) Low Carbon Feedstocks and (2) Process Technologies Will Meet (3) Estimated Low-Carbon Renewable Diesel and Biojet Fuel Demands From 2030 to 2050
APPENDIX OF COMPANY PROFILES, CASE STUDIES, STRATEGIC & PUBLIC-PRIVATE PARTNERSHIPS

RENEWABLE DIESEL PRODUCER CASE STUDIES
- Neste (Rotterdam)
- Neste (Finland Porvoo)
- UPM (Kotka, Finland, 2018)
- ENI (Venice)
- ENI (Sicily Gela Plant Expansion)
- Total (France)
- Preem Gothenburg (Sweden)
- SunPine (Sweden)
- CEPSA (Spain)
- Repsol (Spain)
- Petrixo (UAE)
- Diamond Green (Louisiana, US)
- REG (Geismar, Louisiana, US)
- World Energy Alt Air (Los Angeles, US)
- Emerald Biofuels (US planned)
- Kern Oil (USA)
- Phillips 66 (USA)
- NEXT Renewable Fuels (USA)
- Andeavor (USA)
- ReadiFuels – ARA Chevron Lummus Global (USA)
- BS Bios (Paraguay)
- China (Sinopec)

SUSTAINABLE AVIATION PRODUCERS & CASE STUDIES
- World Energy - United Airlines, GulfStream
- SkyNRG, KLM, AirBP, Oslo, SAS
- Red Rock Biofuels - Southwest Airlines, Federal Express
- Gevo - Lufthansa, Virgin Australia, Alaska Airlines
- Velocys - British Airways
- United Airlines, World Energy, Agrisoma Biosciences
- Amyris, Total, AirFrance,
- Amyris, Airbus, Cathay Pacific
- KLM, Boeing, SkyNRG
- Singapore Airlines, SkyNRG, China Aviation Oil
- Masdar Institute, Etihad Airways
- Statoil, SkyNRG, BMI Regional, Nextjet
- Lanzatech, Virgin Airways
- Licella, Quantas, Virgin Airways
- Fulcrum, Cathay Pacific, BP Air, United Airlines
- Neste Air, Air BP, American Airlines, Alaska, KLM, Lufthansa, SAS
- Total & Amyris - Cathay Pacific
- SGP Preston - JetBlue, Quantas
- ATJ Players: Byogy, Lanzatech, Vertimass profiles
- U.S. Navy Great Green Fleet, Italy/Eni, Australia/Quantas
- Los Angeles Airport- Regular Commercial Flights in 2019
- Stockholm- Regular Commercial Flights in 2019
- Bergen- Regular Commercial Flights in 2019
- Brisbane Airport - Regular Commercial Flights in 2019

PRODUCTION ECONOMICS (CAPEX/OPEX) KEY TECHNOLOGIES
- HEFA/HVO - Hydroprocessed Vegetable Oils, Esters and Fatty Acids
- SIP - Synthesized Iso-Paraffins
- ATJ - Alcohol (iso-butanol and ethanol) To-Jet
- FT - Fischer-Tropsch Gas-to-Liquids, Synruade
- HTL - Hydro-Thermal Liquefaction
- PYR/F/S/H - Pyrolysis (Fast, Slow, Hydropyrolysis) to Bio-Crude

PRODUCTION ECONOMICS (CAPEX/OPEX) OF KEY FEEDSTOCKS
- FOGS - UCO vs DCO, Soy, Palm, PFAD, Canola, Carinata, Camelina,
- Tallow, Yellow Grease, White Grease, Brown Grease
- AG Residues - Bagasse, Corn Stover, Rice Husk, Straw, Palm,
- Forestry Residues - Primary Forest Fuels, Whole Stems, Secondary
- Waste Streams - MSW, Demolition Wood, Green Waste, Plastics
- Energy Crops - Carinata, Camelina, Pine, Miscanthus, Switchgrass

ORDER FORM

PRE-PUBLICATION DISCOUNT OFFER: 10% off Orders Received by October 30, 2019

[] Single User License for $2950 USD
[] Multiple User License for $4950 USD
License for multiple users within the same organization

Name

Position

Organization

Division

Address

Suite, Office #

City, State

Zip/Code

COUNTRY

Phone

Fax

Email

Credit Card Number

Type: Check One [] VISA [] MC [] AMEX

Name On Card

Expiration

Other Type of Payment: [] Paypal [] Wire Transfer [] Check